یک الگوریتم اصلاح گر مرتبه دوم اولیه-دوگان با (o(√nl تکرار برای برنامه ریزی خطی
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه شهید مدنی آذربایجان - دانشکده علوم
- author محمد راشد صلواتی
- adviser بهروز خیرفام
- Number of pages: First 15 pages
- publication year 1393
abstract
در سال 2005 ای و ژانگ برای اولین بار یک الگوریتم بهنگام سازی بزرگ بر اساس همسایگی های وسیع برای مسائل مکملی خطی اکید ارائه دادند که دارای پیچیدگی تئوری یکسان با روش های بهنگام سازی کوچک بود. لیو و همکارانش با اصلاح روش ای-ژانگ، یک الگوریتم اصلاحگر مرتبه دوم برای مسائل برنامه ریزی خطی ارائه دادند. آنها برای بهبود عملکرد الگوریتم ای-ژانگ، در هر تکرار علاوه بر جهت ای-ژانگ یک جهت اصلاحگر را نیز محاسبه کردند و نشان دادند که به کار بردن گام اصلاحگر تاثیری روی پیچیدگی بدترین حالت الگوریتم ندارد. این الگوریتم اولین الگوریتم اصلاحگر مرتبه دوم در همسایگی وسیع با بهترین پیچیدگی شناخته شده برای روش های نقطه درونی است. روش های نقطه درونی را می توان بطور موثری به انواع مسائل بهینه سازی تعمیم داد. به عنوان یک نمونه، به بررسی الگوریتم اصلاحگر مرتبه دوم برای مسائل بهینه سازی نیمه معین می پردازیم.
similar resources
یک الگوریتم سیمپلکس پایه ناقص اولیه برای برنامه ریزی خطی
مسائل برنامه¬ریزی خطی در مقیاس بزرگ در دنیای واقعی به طور معمول دارای تبهگنی شدید هستند. این تبهگنی حل مسائل را توسط الگوریتم سیمپلکس با مشکلاتی روبرو می¬سازد. الگوریتم سیمپلکس پایه ناقص، که در این پایان¬نامه توضیح داده شده است بطور بالقوه¬ از پایداری بیشتری نسبت به الگوریتم سیمپلکس در حل مسائل تبهگن برخوردار است. پایه استاندارد یا پایه مربعی نقش مهمی را در الگوریتم سیمپلکس ایفا می¬کند. در ای...
15 صفحه اولالگوریتم نقطه درونی پیشگو- اصلاح گر نشدنی برای مساله برنامه ریزی مخروط درجه دوم
مروزه روش های نقطه درونی اولیه- دوگان یکی از کارآمدترین روش ها برای حل مسایل برنامه ریزی خطی و غیر خطی است. در این پایان نامه، حل مسایل بهینه سازی بر روی مخروط های درجه دوم را با استفاده از یک روش نقطه درونی پیشگو- اصلاح گر که اخیراً در ادبیات موضوع مطرح شده است، بررسی می کنیم. این الگوریتم فرایندی تکراری است که با یک نقطه آغازین ناشدنی شروع و دنباله ای از نقاط را تولید می کند که به جواب بهینه م...
15 صفحه اولالگوریتم سیمپلکس پایه ناقص اولیه برای مسائل برنامه ریزی خطی
پایه استاندارد که در روش سیمپلکس استفاده می شود تعمیم می یابد تا شامل ماتریس های مستطیلی نیز شود. در این حالت تعداد ستون های ماتریس پایه از تعداد سطرهای ان کمتر است. با استفاده از تجزیه ی lu این ماتریس پایه تجزیه شده و در هر تکرار عامل های lu آن به هنگام می شموند تا بهینگی به دست آید. مزیت این روش نست به روش سیمپلکس استاندارد، اجتناب از دور می باشد. در بخشی از این پایان نامه الگوریتم پیشنهادی ر...
15 صفحه اولالگوریتم های نقطه درونی اولیه -دوگان برای بهینه سازی مخروط مرتبه دوم بر اساس توابع هسته
در این پایان نامه ، الگوریتم های نقطه درونی اولیه – دوگان برای بهینه سازی مخروط مرتبه دوم ، بر پایه توابع هسته متنوع ارائه می شود. و توابع هسته پیچیدگی بهتری را نتیجه می دهند، لذا از اهمیت زیادی برخوردارند. این دسته از توابع هسته ، قبلا" در بهینه سازی خطی بررسی شده است . کران های تکرار برای روش های بهنگام سازی بزرگ و کوچک o(?n log?n)log??n/?? و o(?n)log??n/?? بوده که n عدد مخروط مرتبه دوم در تد...
15 صفحه اولبرنامه ریزی خطی نیمه نامتناهی: الگوریتم های حل و کاربردها
مسائل برنامه ریزی خطی نیمه نامتناهی گرچه دارای خصوصیاتی شبیه مسائل متناهی هستند اما در مواردی و خصوصا در شیوه های حل با آنها تفاوت دارند. در این نوشتار نمونه هایی از برنامه ریزی خطی نیمه نامتناهی و رده های مختلف آن را معرفی و تشریح می کنیم. سپس شکاف دوگانی را برای آنها تعریف کرده بر مبنای آن به ارائه الگوریتم های حل این گونه مسائل در حالت های پیوسته و شمارا می پردازیم. همچنین روش همگرایی در خص...
full textMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه شهید مدنی آذربایجان - دانشکده علوم
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023